a1+2+an+1+an+n+1
设数列{an}中,a1=2,an+1=an+n+1,则通项an=
an+1=an+n+1,则an+1 - an = n+1an - an-1 = n-1+1an-1 -an-2 =n-2+1……a2 -a1 =2将上等式相加得an-a1=(2+n)(n-1)/2a2=a1+2a3=a2+...
请问a1=2,an+1=an+n+1,求通项公式an怎么求得,用累加法 - 百...
解:a(n+1)=an+n+1 a(n+1)-an=n+1 an-a(n-1)=n a(n-1)-a(n-2)=n-1 ………a2-a1=2 累加 an-a1=2+3+...+n an=a1+2+3+...+n =2+...
设数列{an}中,a1=2,an+1=an+n+1,则通项an= - - - .
解答:解:∵a1=2,an+1=an+n+1∴an=an-1+(n-1)+1,an-1=an-2+(n-2)+1,an-2=an-3+(n-3)+1,…,a3=a2+2+1,a2=a1+1+1,a1=2=1+1将以上各式...
已知数列{an}满足:a1=1,an+1=2an+1.(1)求数列{an}的通...
(1)解:由an+1=2an+1,得an+1+1=2(an+1),又a1=1,所以{an+1}是以2为首项、2为公比的等比数列,所以an+1=2×2n-1,an=2n-1.(2)bn=anan+1=(2n-1)(...
...有an+1=anan - 1…a2a1+1成立;(Ⅲ)1 - 122014<1a1+1a2+...
解答:证明:(Ⅰ)当n=1时,a1=2>1成立,当k≥2时,假设ak>1成立,那么当n=k+1时,因为ak+1=ak2-ak+1=(ak 12)2+34在(1,+∞)递增,所以ak+1>1也成立,综上得...
设数列an中,a1=2,An+1=An+n+1,求An的通项
回答:真心望采纳
设数列{an}满足a1=0,2an+1=1+anan+1 (1)求证: 为等差数列...
所以数列{a(n)/a(n)-1]}为公差-1的等差数列。因为c1=a(1)/[a(1)-1]=0,所以cn=c1+(n-1)(-1)=1-n 即a(n)/[a(n)-1]=1-n,化简得到an=(n-1...
已知数列{an}满足an+1=2+an(n∈N*),且a1=1.(1)求数列{...
(1)∵数列{an}满足an+1=2+an(n∈N*),且a1=1.∴an+1-an=2,∴数列{an}是以1为首项,以2为公差的等差数列,∴an=1+2(n-1)=2n-1,即an=2n-1,(n∈N*)...
已知数列{an}满足a1=1,an+1=2an+n+1,设数列{an}的前n项...
所以 a(n+1)+(n+1)/an+n=2 设cn=an+n 则 cn是以a1+1为首项 公比为2的等比数列。所以cn=2^n=an+n 所以an=2^n-n 前n项和为 Sn= 一个等比数列...
在数列an中 a1 =2 an+1=an+n+1求通项
解:因为an+1=an+n+1所以an+1-an=n+1即d=n+1又因为a1 =2所以an=2+(n-1)(n+1)=n²+1因为an+1=an+n+1所以当a...